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The activity of the pyruvate dehydrogenase (PDH)
complex is lower during conditions of reduced oxidative
glucose metabolism such as obesity, starvation, and
diabetes and in patients with congenital lactic acidosis.1-6

The PDH complex catalyzes the decarboxylation of
pyruvate to acetyl-CoA.7 The activity of the PDH
complex is primarily regulated via reversible phospho-
rylation. ATP-dependent phosphorylation of a specific
E1 serine residue by four isozymes of pyruvate dehy-
drogenase kinases (PDHKs)8-10 leads to inactivation of
the complex and consequently to reduced oxidative
glucose metabolism. Dephosphorylation of the serine
residue by pyruvate dehydrogenase phosphatases reac-
tivates the complex.11 High intramitochondrial concen-
trations of acetyl-CoA, which can be formed from
excessive oxidation of free fatty acids, markedly in-
creases the activity of PDHK. It has been proposed that
the reversible acetylation of the lipoamide of the E2
subunit within the PDH complex, which reversibly binds
to PDHK, is responsible for this end-product activation
of PDHK.12 This is consistent with the Randle hypoth-
esis, which states that the oxidation of free fatty acids
and the oxidation of glucose are related in a reciprocal
manner.13

Oral administration of sodium dichloroacetate (DCA),
a known inhibitor of PDHKs, to type 2 diabetic patients
lowered fasting plasma lactate, alanine, and glucose
levels.14-16 Although infusion of DCA lowered plasma
lactate and alanine levels in healthy volunteers, no
hypoglycemic effect was observed.17 DCA has proven
efficacy as a therapy for diabetes, ischemia,18 endotoxic

shock,19 hemorrhagic shock,20 lactic acidosis,21 and
cardiac insufficiency.22,23 However, DCA cannot be used
in long-term treatment due to toxicity. The toxic effects
presented by DCA are neuropathic effects, cataract
formation, and testicular degeneration.24-27 The neur-
opathy caused by DCA is exhibited primarily by revers-
ible limb motor weakness and demyelination of cerebral
and cerebellar white matter. The incidence of limb
weakness in rats receiving 1.1 g/kg/day for 7 weeks is
∼6%. The toxic effects of DCA have been attributed, in
part, to the accumulation of its main metabolite, oxalic
acid. However, compounds with halides in the R-position
to a carbonyl are known to exhibit toxic effects.28,29 No
compounds other than R,R-dihalogenated carbonyl com-
pounds are known to inhibit PDHK.30 Herein is reported
a program which resulted in structurally novel, orally
active inhibitors of PDHK.

We found that the amide 3b inhibited PDHK in the
primary enzymatic assay.31 Amides of (S)-3,3,3-trifluoro-
2-hydroxy-2-methylpropionic acid had been demon-
strated to be orally bioavailable and are being investi-
gated for the indication of urinary incontinence.32

Therefore, systematic exploration of the structural
features necessary for more potent inhibitors was initi-
ated.

The synthetic methods used in the preparation of
these PDHK inhibitors are shown in Schemes 1-3. (R)-
3,3,3-Trifluoro-2-hydroxy-2-methylpropionic acid (1) can
be effectively produced via the enzymatic resolution of
the butyrate ester of the racemate of 1.33,34 The amides
can be made directly from (R)-3,3,3-trifluoro-2-hydroxy-
2-methylpropionic acid (1) via conversion of the acid to
(S)-3,3,3-trifluoro-2-(trimethylsiloxy)-2-methylpropio-
nyl chloride (2) utilizing a modification of Kelly’s
procedure (see Scheme 1).35 In short, the acyl halide was
prepared by treating the carboxylic acid 1 with bis-
(trimethylsilyl)urea in CH2Cl2. After filtration to remove
the urea byproduct, the bissilylated acid is converted
to the acyl halide 2 by treatment with oxalyl chloride
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Scheme 1. Preparation of Amidesa

a Conditions: (a) 1,3-bis(trimethylsilyl)urea, CH2Cl2; (b) (COCl)2,
cat. DMF, CH2Cl2; (c) Et3N, CH2Cl2, amine; (d) aq HCl, MeOH.
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in the presence of a catalytic amount of DMF. The acid
chloride 2 can be distilled from the reaction mixture, if
desired. However, 2 can also be stored for weeks at room
temperature as the crude reaction mixture and utilized
as such with no discernible detrimental effect on the
coupling yields. The crude R-siloxyamides produced by
coupling with an amine are effectively desilylated by
methanolic HCl to afford 3a-h,m,p.

The anilides 3i-k were made via elaboration of the
anilides 3e,h (see Scheme 2). Hydrolysis of the methyl
ester 3h with ethanolic KOH afforded 3i, which upon
treatment with the coupling reagent (benzotriazol-1-
yloxy)tripyrrolodinophosphonium hexafluorophosphate
(PyBOP) and piperidine formed 3j. Displacement of the
fluoride of 3e with piperazine afforded 3k.

The obvious route to 3n was to monoacylate (R)-2-
methylpiperazine (5) with 2 (see Scheme 3). However,
monoacetylation of piperazines is difficult,36 and varied
attempts to monoacetylate piperazines with 2 failed. An
efficient route to 3n was to take advantage of the report
that 2-substituted piperazines can be monosulfony-

lated.37 Employing the protecting moiety developed by
Fukayama et al.,38 (R)-2-methylpiperazine (5) was
cleanly monosulfonylated with 2-nitrobenzenesulfonyl
chloride to afford 6. Consequently, large quantities of
3m from 5 were obtainable in excellent yield. Reductive
cleavage of the carbobenzyloxy moiety gave 3n, and
benzoylation with 4-cyanobenzoyl chloride afforded 3o.

Optically pure 3r was conveniently prepared from
achiral trans-2,5-dimethylpiperazine in six steps by
monobenzylation of a 1:1 mixture of its bishydrochloride
salt 7 and its free base 8 in absolute ethanol in a
modification of Craig and Young’s procedure to produce
racemic 9.39 A single crystallization of the bistartrate
salt of 9 from methanol afforded 9 with 90% enantio-
meric excess with a second recrystallization affording
optically pure 9 in 79% overall theoretical yield. Acy-
lation of the salt of 9 with 2, followed by reduction over
Pd in ethanolic HCl, formed 3q (the stereochemistry of
3q was confirmed through an X-ray crystal structure
of its HCl salt). Acylation of 3q with 4-cyanobenzoyl
chloride gave 3r.

Scheme 2. Elaboration of Anilides 3e,ha

a Conditions: (a) KOH, EtOH; (b) aq HCl; (c) PyBOP, CH2Cl2, piperidine; (d) piperazine, CH2Cl2.

Scheme 3. Synthesis of Bisacylated Piperazinesa

a Conditions: (a) Et3N, CH2Cl2, 2; (b) aq HCl, MeOH; (c) Pd/C, H2, EtOH; (d) Et3N, CH2Cl2, 4-CN-C6H4COCl; (e) 2-(NO2)-C6H4SO2Cl,
K2CO3, aq acetone; (f) CBZCl, K2CO3, aq acetone; (g) C6H5SH, K2CO3, DMF; (h) EtOH, BnCl; (i) 2 equiv of (-)-tartaric acid, H2O,
recrystallize.
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The compounds prepared above were tested in the
primary high-throughput assay, which utilizes the
commercially available porcine PDH complex40 that
contains intrinsic PDHK activity as reported.31 Briefly,
the assay consists of two experimental steps: In the first
step, PDHK catalyzes the ATP-dependent phosphory-
lation of the PDH complex in the presence or absence
of inhibitor. The second step determines the extent of
the PDH complex inactivation and is measured spec-
trophotometrically via the absorbance of the NADH
produced by the complex (see Figure 1).

As anticipated, it was found that all of the PDHK
inhibitors identified from our high-throughput screening
are remarkably selective versus other eukaryotic Ser/
Thr/Tyr protein kinases. No compound in this report,
nor in our other series of PDH kinase inhibitors, has
displayed any significant inhibition of cAMPk or p38
MAP kinase at concentrations below 100 µM as mea-
sured by the assays described in the literature.41,42 The
anticipated selectivity was due to the fact that while
PDHK isozymes share significant sequence similarity
with members of the prokaryotic histidine protein
kinases,43,44 PDHK isozymes share little similarity with
the catalytic domain of the eukaryotic Ser/Thr/Tyr
protein kinase family.45

The compounds’ IC50’s for the inhibition of the inac-
tivation of the PDH complex by PDHK are reported in
Table 1. Diverse amides of (R)-3,3,3-trifluoro-2-hydroxy-
2-methylpropionic acid of structure 3a,b,l are modest
to potent inhibitors of PDHK. Substitution of the anilide
in the ortho position with a small electron-withdrawing
group increased the potency of the anilide series mark-
edly (i.e., compare 3b,c to 3f,g). Substitution in the para
position increased the potency of the series modestly
(compare 3b to 3c,d). Although 3g-k and other 4-sub-
stituted 2-chloroanilides not reported here were nearly
equivalent in their ability to inhibit PDHKs’ ability to
inactivate the complex, their oral activity in vivo
varied.46 Mono- and disubstitution of the piperazine 3l
in the 3- and 2,5-positions with a methyl moiety mark-
edly increased the potency of the series (compare 3l to
3p,s). The 4-cyanobenzoyl moiety of 3o,r can be replaced

with a wide variety of substituents (acyl, alkyl, aryl,
sulfonyl, etc.).47

The potent inhibitors described above were evaluated
for their ability to increase the conversion of [14C]lactate
into 14CO2 in human fibroblasts as a measure of their
activation of the PDH complex in a modification of
Ofenstein’s assay (Table 1).48 Compounds 3c,f,i-k,o,r
had EC50’s in the cellular assay of less than 20 µM. The
typical magnitude of the increase of lactate conversion
to CO2 was 600-1000% of control. Potency of com-
pounds in the cellular assay usually correlated well to
their potency in the primary enzymatic assay (e.g., 3o
to 3r,b, 3f to 3i). However, the anilides tend to be less
potent in the cellular assay than the piperazine deriva-
tives (e.g., compare 3i,k to 3o).

Excellent oral bioavailability of the anilides and
piperazine derivatives was demonstrated upon oral
administration of 3i,k,o at doses of 30, 100, and 300
µmol/kg. Peak blood plasma concentrations of greater
than 20 µM were obtained with each of the compounds
(Table 2). Each also had an estimated half-life of at least
3 h. These orally bioavailable compounds were profiled
for their ability to lower lactate, the most proximal effect
of PDHK inhibition, in 24-h fasted normal animals.49

Each of these compounds significantly lowered lactate
at the 2-h time point (Table 1). As would be expected
from the cellular data, the piperazine analogues were
more potent than the anilide analogues. The maximal
lactate lowering of these compounds was in general
statistically equivalent to the maximal effect of DCA.
The piperazine 3r, the most potent compound in vivo
described within this report, lowered blood lactate
significantly when dosed at 1 µmol/kg in normal fasted
rats.

As noted earlier, anilides of (S)-3,3,3-trifluoro-2-
hydroxy-2-methylpropionic acid have been reported to
activate the KATP channel and are being investigated
clinically as potential therapy for urinary incontinence.32

However, the SAR for each of these targets is very
different. Importantly, the (S)-enantiomer of the acid
is the preferred enantiomer for the KATP channel open-
ing, while the (R)-enantiomer is preferred for PDHK
inhibition [compare 3a,f to 3a(S),f(S)]. In addition,
substitution at the 2-position of an anilide with a
halogen has been reported to diminish the potency of
KATP channel openers,32 while this substitution mark-
edly increases the potency of the PDHK inhibitors. In
general, the (R)-antipodes of the (S)-anilides reported
as KATP inhibitors are modest inhibitors of PDHK (IC50’s
of 0.5-20 µM) and can be increased in potency by ∼5-
40-fold by 2-substitution of a halogen or a small
electron-withdrawing substituent (i.e., Cl, Br, F, or
acetyl; compare 3c to 3g). 3g,i present no measurable
effect on KATP activity in vitro (IC50 > 100 µM) or ex
vivo (ED50 > 300 µM) utilizing assays described in the
literature (data not shown). The few secondary amides
of (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
previously described were reported to be devoid of KATP
channel-opening activity.32 The piperazine analogues
reported above similarly have no effect on KATP channels
(data not shown).

In summary, diverse amides of (R)-3,3,3-trifluoro-2-
hydroxy-2-methylpropionic acid are the first inhibitors
of PDHK reported without halogens R,R to a carbonyl.

Figure 1. Depiction of PDHK primary assay. Inhibitors of
PDHK do not allow the complex to become inactivated in the
presence of ATP during step 2. The concentration at which
50% of the original NADH production is maintained is the
apparent IC50 (see ref 31).
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In addition to the probable reduced toxicity due to not
having halogens R to a carbonyl, these compounds are
more potent in the primary enzymatic assay than any
of the previously reported compounds by up to 500-fold.
They are the first compounds other than dichlorinated
halogenated acids known to be active in a cellular assay.
The amides 3i,k,o,r are potent and orally bioavailable
inhibitors of PDHK in vivo. The expected consequence
of PDHK inhibition, the activation of the PDH complex,
was observed indirectly in vivo by measuring the
lowering of lactate in normal 24-h fasted rats after oral
dosing. These compounds will allow further pharmaco-
logical investigation of the effect of increasing oxidative
disposal of lactate and pyruvate in disease states such
as diabetes, ischemia, endotoxic shock, hemorrhagic
shock, lactic acidosis, and cardiac insufficiency. Studies
pertaining to the further exploitation of the SAR, the
mechanism, and the pharmacology of this class of
inhibitors are ongoing and will be the topic of subse-
quent reports.
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